
LLNL-JRNL-401821

Sub-discretized surface model with
application to contact mechanics in
multi-body simulation

S. Johnson, J. Williams

February 29, 2008

Powder Technology



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



LLNL-JRNL-401821 

Sub-discretized surface model with application to contact mechanics in multi-body 
simulation 

 
Scott M. Johnson 

Lawrence Livermore National Laboratory, Livermore, California, USA 94551 
 

John R. Williams 
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139 

 
Abstract: 

The mechanics of contact between rough and imperfectly spherical adhesive powder 
grains are often complicated by a variety of factors, including several which vary over 
sub-grain length scales. These include several traction factors that vary spatially over the 
surface of the individual grains, including high energy electron and acceptor sites 
(electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface 
energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic 
deformation (mechanical). For mechanical deformation and reaction, coupled motions, 
such as twisting with bending and sliding, as well as surface roughness add an asymmetry 
to the contact force which invalidates assumptions for popular models of contact, such as 
the Hertzian and its derivatives [1-3], for the non-adhesive case, and the JKR [4] and 
DMT [5] models for adhesive contacts. Though several contact laws have been offered to 
ameliorate these drawbacks, they are often constrained to particular loading paths (most 
often normal loading) and are relatively complicated for computational implementation. 
This paper offers a simple and general computational method for augmenting contact law 
predictions in multi-body simulations through characterization of the contact surfaces 
using a hierarchically-defined surface sub-discretization. For the case of adhesive contact 
between powder grains in low stress regimes, this technique can allow a variety of 
existing contact laws to be resolved across scales, allowing for moments and torques 
about the contact area as well as normal and tangential tractions to be resolved. This is 
especially useful for multi-body simulation applications where the modeler desires 
statistical distributions and calibration for parameters in contact laws commonly used for 
resolving near-surface contact mechanics. The approach is verified against analytical 
results for the case of rough, elastic spheres. 

1. Introduction: 

A variety of contact laws are available in the literature to describe a wide range of contact 
phenomena at a similarly wide range of resolutions and assumptions. The appropriateness 
of particular contact laws in multi-body methods, such as discrete element modeling 
(DEM), is highly dependent on the application of interest. For instance, in highly 
dynamic ball-milling applications where the engineering property of interest is power 
draw, the solution is often insensitive to both form and magnitude of the elastic part of 
the contact law; however, the resolution of energy dissipated in contact (plastic 
deformation) and crushing (comminution) must be captured accurately to arrive at a 
useful answer. Conversely, for wave propagation studies in the elastic region, the form 
and magnitude of the elastic part of the contact law must be finely resolved, whereas 
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fracture and plastic deformation (and the associated energy loss) are unnecessary. In 
systems where there is high stress, and extensive plastic deformation occurs, or where the 
loading rate is high (e.g., shock loading of granular material), the assumptions of 
traditional DEM approaches are violated altogether. Certain phenomena, such as energy 
lost to acoustic waves dissipating energy within individual grains, can be neglected in 
traditional DEM models, since at the loading rates where the small deformation 
assumption applies, acoustic loss contributes less than 1% of the total lost energy [6]. 
There are limitations to using traditional DEM for capturing grain crushing and fracture; 
however, several approaches have been adopted to handle the case of fracturing grains, 
including bonded agglomerates [7], finite element sub-discretization of grains [8, 9], and 
statistical breakage criteria [10]. For systems of highly adhesive powders at relatively low 
stresses, where large plastic deformation and comminution of the grains are unlikely, 
inertial effects are slight, and contact properties, including coupled motions and spatially-
varying attractive potentials, control the behavior of the system, it is important to 
adequately resolve the contact surface. This last case is the focus of this paper. 

Many implementations of the DEM rely on calibrations of simple visco-elastic force-
displacement relations (i.e., spring-dashpot) to model the response of materials; however, 
it has generally been realized that more appropriate, physically-based contact relations 
exist. The Hertzian solution for perfectly elastic spheres [11] is, therefore, often used to 
resolve the normal component of mechanical force for contacts in the absence of 
adhesion. Finite element codes have aided in extending the analytical forms and 
linearizing the results for efficient use in DEM [12]. Extensions by Mindlin [2, 3] and 
simplifications by others [13] are often used to capture tangential response. Other 
tangential force models have been proposed [14], which are validated against elasto-
plastic finite element calculations. Simulations validated against experiments of oblique 
impact of elastic spheres [15], though, indicate that simple Hertz-Mindlin-Deresiewicz 
(HMD) contact [3] is insufficient to describe the complex coupling between the different 
degrees-of-freedom mobilized at the contact. Further evidence of non-elastic behavior in 
tangential loading despite elastic loading in the normal direction suggests a more 
complicated form to tangential force-displacement as well [16]. 

The extension of mechanical response to include adhesive forces has also been examined, 
and often the models of Johnson, Kendall, and Roberts (JKR) [4]; Derjaguin et. al (DMT) 
[5]; Maugis-Pollock [17]; and Maugis-Dugdale [18], which, taken together, can describe 
the deformation regime across the range from fully elastic to fully plastic, are used. None 
of these explicitly describes the mechanical response for coupled motions mobilizing 
multiple degrees-of-freedom but rather rely on isotropic, symmetric contact loading. 
Thornton and Yin [15] address adhesive contact using the JKR model and the work of 
Savkor and Briggs [19] to capture combined normal and tangential loading of adhesive 
elastic solids, offering coupling between two degrees-of-freedom. Lüding [20] proposes 
an adhesive elasto-plastic relation to capture adhesion effects also with tangential and 
normal loading; the approach is similar to an extension of the latching spring model [12] 
applied to adhesion with additional softening in the compressive relaxation. Recent work 
by Tomas [21, 22] has provided an appropriate resolution of traction resulting from 
mobilized frictional contact torques between idealized spherical bodies in the presence of 
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adhesion. All of these models, however, assume smooth surfaces, which limits the range 
of application. 

Perfectly spherical bodies are useful in validating the assumptions of different contact 
laws; however, many real materials are not perfectly spherical and display shape factors 
that vary significantly from unity. Even small inhomogeneities in the geometry can 
provide significant resistance to rotation through dilation, which spheres cannot exhibit 
[23], or through both strong and weak geometric interlocking, a specific example of 
which is demonstrated by Favier [24] for ellipsoids versus ellipsoidal agglomerates of 
spheres. Several ad hoc approaches have been proposed to calibrate a rotational 
resistance term for disk- and sphere-shaped bodies [25, 26]; however, it is often desired 
to have a physically-motivated law rather than a purely calibrated factor. Several models 
instead use non-spherical, smooth bodies in 2D [27, 28] and 3D [29-34] to more closely 
capture the geometric interlocking between grain of engineering interest. An appropriate 
elasto-plastic law is further used to describe the rolling friction due to the torque 
associated with elastic unloading of the plastically deformed region being released 
coupled with the reactive force from plastic deformation at the load front . 

Further complexities are introduced when not only does the shape deviate from spherical 
but also when there is surface roughness and angularity. The discussions of rough surface 
modeling for adhesive surfaces are often focused on applications to normal force 
resolution and are often predicated on the model of Greenwood and Williamson [35] and 
Greenwood and Tripp [36], models which assume that the asperity heights are 
statistically distributed, the asperity curvature is constant, there is no coupling between 
asperity deformations, and there is no bulk deformation. Recent work by Ciavarella [37] 
has attempted to relax the last two assumptions of the Greenwood and Williamson [35] 
model by proposing a discretized surface profile of the asperity peaks based on 
experimentally-determined surface scans and then using Hertzian contact to aggregate an 
effective constitutive model of the contact law for forces normal to the surface. 
Majumdar [38] has also presented a comprehensive theory of normal contact between 
rough surfaces based on accurate characterization of the fractal parameters of the 
roughness combined with an analytical solution of the governing mechanics. 

Attempts have also been made to characterize tangential surface tractions for adhesive 
rough surfaces, using statistically-defined surface asperity distributions. The model of 
Chang et. al. [39], for instance, uses an elastic perfectly brittle model to calculate 
tangential traction on a multi-asperity surface. Using the single asperity contact model of 
Hurtado and Kim [40, 41], a popular contact model for single asperity contacts, and the 
DMT [5] model of adhesion, Adams et. al. [42, 43] provide a physically-based, multi-
asperity model of friction using an elasto-plastic model of the asperities. However, these 
have yet to be incorporated into memory-dependent contact algorithms for use in multi-
body simulation or to handle more complex coupled motions. 

Here we attempt to use a novel approach to represent multi-asperity contacts in multi-
body dynamics, which allows for coupling of the surface asperities and bulk deformation 
when the plastic limit of the surface asperities is exceeded, a necessary extension over the 
model of Greenwood and Williamson [35] to capture the behaviors of interest here. This 
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applies to normal, tangential, twisting, and coupled motions. We achieve this by 
combining concepts of pixilation of the surface of individual grains with statistical 
distributions of asperities as well as an elasto-plastic relation for the deformation of 
individual asperities. The asperity state variables can be efficiently tracked over time 
through the use of a contact spot discretization. Generation of the contact spot properties 
is aided by an approach to sub-discretizing the grain surface, which was first discussed by 
Johnson [44, 45] and significantly extended here. The approach is also currently being 
extended to use other models of asperity deformation to better capture the contact physics 
for low-stress, adhesive contact. Though this approach has significant applications in 
addressing several shortcomings of many contact model implementations in multi-body 
physics codes by capturing the full complement of coupled-degree-of-freedom effects (at 
the expense of computational efficiency), the approach also has obvious extensions to 
many other surface phenomena of interest, such as roughness effects (with fine control of 
asperity scales) in aspherical soil compression; the triboelectric creation and interaction 
of localized electrostatic charge spots; and the bridging, ion transport, and surface charge-
coupled effects of adsorbed water and other volatile compounds.  

2. Drawbacks of Typical Surface Morphology Characterization Metrics: 

The determination of when an angular deviation should be considered as part of the 
general topology (sphericity term) or when a small asperity should be included with the 
angularity term is currently subjective, though, objective measures have been established 
to try to address this. Even with objective metrics, the classifications are dependent on the 
application. It can be readily seen that an asperity of 1% the height of the smallest 
dimension of the particle may be included in the friction parameters (roughness) for a 
compressed dense fabric analysis, but that same asperity may need to be explicitly 
modeled if the particle is being measured for the rebound angle after collision. 
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Figure 1: Illustration of similar RMS values for dissimilar surface profiles 

Systematic methods to characterize material shape quantitatively have received greater 
attention over the previous decade. For powder characterization, a coarse convex 
geometry is generally assumed and asperities are then characterized by statistical 
relations based on the deviation of the surface from the coarse approximation. Commonly 
used metrics are the root mean square (RMS) deviations of the surface [46] based on the 
finest observed resolution data. This uses the first moment of the distribution (the 
variance) of the asperities. The mean as well as higher order moments (skewness and 
kurtosis) are also sometimes used to characterize a surface [46]. The drawback to this 
type of analysis is the loss of potentially important information. For instance, as Figure 1 
shows, the most common measure, RMS, will yield a metric that has the same result for a 
smooth surface with a few large asperities (bottom) as a rougher surface of smaller 
asperities (top). For contact mechanics and interaction force theories, these two types of 
surfaces yield drastically different behavior. A similar effect was theorized by Sayles 
[47], and it was shown that stochastic surface profiles are sensitive to the scanning length 
(analysis window) and the frequency. The shortcomings in these models, therefore, lie in 
the inability to capture particle morphology across a range of scales. Relatively recently, 
self-similar fractal surfaces have been assumed and confirmed for many engineering 
surfaces of interest [35, 38, 48], and it is the measurement of these parameters that are 
key. 

Despite the realization among theoreticians that fractal geometry describes roughness 
well, in practice there is often a lack of a common framework to measure particle 
morphology and differing resolution requirements between different applications, which 
has generally led to the adoption of the coarsest model by those designing multi-body 
simulations to determine the emergent behavior of large numbers of interacting rough 
bodies. For instance Odagi [49] uses a mono-disperse distribution of hemispherical 
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asperities to model surface angularity, which disregards the multi-scale nature of 
surfaces. It should be noted that the concept used by Odagi [49] was first forwarded by 
Archard [50, 51] as a multi-scale description of surface asperities; however, this model 
has yet to be incorporated into multi-body simulations. Most importantly, because the 
most successful models of rough contact described earlier are based on statistical 
descriptions of surfaces and contacting surfaces are often characterized by only a few 
hundred contacting asperities [52], it is unclear how these models can be directly applied 
to multi-body simulations at the grain-scale, since the phenomenology at the length scale 
being modeled will be affected by the stochastic variability of the involved contacts.  

The confounding problem seems to be that geometric features are not separable into 
distinct categories but are continuous across scale as discussed earlier. A proper 
framework would integrate the property of continuity across scale to allow descriptions 
of roughness and the resultant mechanical behavior from roughness. From this logic, it 
would be preferable to have a hierarchical computational method for describing particle 
geometry, allowing the modeler to only include shape resolution to the depth necessary 
for the problem, as suggested by the band-pass model of Thomas and Sayles [53]. 

The ability to model object resolution in a hierarchical framework is not necessarily a 
new idea. Demand from 3-D game design, recent interest in agent-based 
computing/visualization, and scientific visualization research have advanced the study of 
hierarchical geometric representations over the past decade. These have included 
increased refinement of voxelization [54], spherical harmonics [55], radial basis functions 
[56], and surface wavelets. For roughly spherical particles, for instance, spherical 
wavelets [57] can be used to capture hierarchically more detailed resolutions of a general 
topology with specific application to graphical texture mapping.  

Though excellent at representing geometries efficiently for graphics rendering, this work 
had generally been poor at capturing surface normals and edge features that are 
fundamental to accurately resolving contact in particle methods, such as discrete element 
modeling. As an extension of the work in computer graphics, researchers adapted some 
of these methods for characterizing real-world granular materials. The idea of using 
spherical harmonics for capturing particle shape in a hierarchical manner was forwarded 
by Garboczi [55]. A more general method of capturing surface morphology using surface 
wavelets was formulated in the context of discrete element modeling by Williams and 
Amaratunga [58] and further developed for general surface integral evaluations by 
Amaratunga [59, 60]. 

These approaches are excellent for categorization of particles and provide a more precise 
characterization of granular materials over the classic categories of sphericity, angularity, 
and roughness. They also have the flexibility of capturing surface normals required for 
resolving contact. However, these hierarchical approaches have a drawback for 
application in DEM, in that the generality of the methods disregards the existence of an 
implicit convex hull for the geometry, and it is not obvious how to efficiently calculate 
properties necessary to resolve contact between adjacent bodies. Simple convex hulls are 
a key requirement for a contact detection algorithm in DEM to work efficiently. By 
applying destructive geometry to a simple gross topology, wavelets could theoretically be 



LLNL-JRNL-401821 

used to characterize the angularity and roughness that describes the difference between a 
particle and the simple primitive used to approximate it, though, this has yet to be 
implemented. In this paper, we propose a simpler model using nested surface maps, 
which allows both hierarchically defined surface properties as well as a fast and efficient 
value query. 

3. Surface Representation of the Grain: 

The ability to layer information on the surface of a body can be useful from several 
different viewpoints. Layering of data for surface properties is achieved through a 
procedure akin to texture mapping in computer graphics. A 2-D patch is mapped over the 
surface of a convex body using a curvilinear (U-V) coordinate system corresponding to 
local latitudes and longitudes on the particle surface. For ease of reference, the procedure 
developed here will be called the surface discretization model (SDM) throughout the 
paper. 

Any number of scalar and vector data can be layered onto a geometric primitive in this 
way. If the data being layered is, for instance, asperity height data, it can be represented 
in the map much like digital elevation map data on a regular grid, except the baseline is 
the geometric boundary of the primitive and the height data represents the depth of 
indentations on the surface, allowing the primitive to become a convex hull. Roughness 
can be defined in terms of the unsigned deviation of the true radius from the gross 
geometry assumed. The deviation will be taken as unsigned so as to enforce the 
constraint that the gross geometry be a convex hull of the particle, which is amenable to 
use in contact resolution schemes. 

 

Figure 2: Illustration of data layering for a 1-D map and 2-D primitive: an unsigned 1-D function is 
used to map multi-physics information (e.g., asperity depth data) onto the surface 

 

 

Figure 3: Illustration of data layering for a 2-D map and 3-D primitive: an unsigned 2-D function is 
used to map asperity depth data onto the surface. 
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In Figure 2, the data layering approach that will be described in this section is used to 
capture asperities. The example in Figure 2 is in 2-D to illustrate the details of applying 
the method; however, the extension to 3-D naturally follows as shown in Figure 3. 

The map is created using an array of dimension 3, where the dimensional discretization is 
of size [numu, numv, nump]. numu indicates the discretization along the latitudinal 
direction, numv the discretization along the longitudinal direction, and nump indicates the 
number of layers of information (extra parameters) being modeled. For instance, a map 
containing a scalar characterizing surface water adsorption, a local surface energy scalar, 
and asperity height data would be nump=3. 

To map a point in the global reference frame to the map, which is based in the local 
reference frame of the body of interest, the following procedure may be used. 
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where cp  is the global coordinate of the point, cog  is the centroid of the particle, and R is 
the rotation tensor. 

If sin(φ)=0, then θ=0. Otherwise, the θ angle is determined through the following 
procedure: 
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Note that the variables θ and φ are constrained to be in: 
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For a map of size [numu,numv], the bins corresponding to the point cp  can then be found 
as: 
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If the data layer, for example, holds asperity height data, simply scale the value in 
map[binu,binv] appropriately and subtract it from the calculated normal at point cp . Note 
that map[binu,binv] denotes the value of the data layer array corresponding to (binu,binv). 
This general procedure can be used for any scalar data: 

],[0 vudunperturbeperturbed binbinmap⋅−= βρρ  

EQ 4 

where 0β  is the scaling factor at level 0. 
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For a smoothed value of the scalar, a simple linear shape function interpolation can be 
used by assuming that the scalar value represented by the cell is centered in the cell: 
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The further capability of this method comes from its extension across multiple scales. 
The simplest method of extension is by subdividing each grid cell into a new grid of 

vu numnum ×  cells. The part of the contact point cp  resolved at level n-1 is removed for 
the analysis at level n, and the remainder is mapped onto the data layer and scaled by βi 
where i=[0,n]. The general concept is illustrated in Figure 4. 

 

 

Figure 4: Illustration of grid subdivision for a 3-D primitive. 
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The component of θ and φ at level n-1 can be determined by the following equations: 
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where 0== ii φθ  when i<0. 

The mapped bins corresponding to these values can then be determined by: 
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The scaled scalar is then calculated: 

[ ]iviuii binbinmap ,, ,~ ⋅= βρ  

EQ 12 

where [ ]iviu binbinmap ,, ,  is the scalar associated with binu,i and binv,I, iβ  is the scale factor 
associated with the map hierarchy level i,  and iρ

~  is the final scaled value of the scalar 
for level i.  

As an example of the application of the multi-scale procedure, assume that the map is a 
2x2 map along θ=[0,2π) and φ=[0,π), the point to be mapped lies in the local reference 
frame at θ=3π/2+0.1 and φ=π/2+0.2, and the map is a 2 level hierarchy with the scaling 
factor βi=βi-1/2. The 2x2 map is specified as: 
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The procedure would be applied as follows, using EQ 10- EQ 12: 

First level: 
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Note that at level 1, θ1=3π/2=θ-R where the residual R=0.1, and φ1=π/2=φ-R where the 
residual R=0.2. 

To acquire the multiscale reconstruction of the map value, take: 
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Figure 5: Illustration of hierarchical destructive geometry representation of surface profiles for 
(from top left to lower right) levels 0-5 of refinement 

An example is visualized in Figure 5 for scalar surface profile information where the 
number of bins is 8 in each direction (u and v) for the parent map (0-level) and 2 in each 
direction for each higher level map. The radius deviations are sampled from a uniform 
random distribution in the range [0,1] with a constant scale factor of 5% applied, so the 
effective distribution is uniform random in the range [0,0.05]. 

 

Figure 6: Illustration of self-similar hierarchical representation for (left to right) levels 1-3 of 
refinement 

Because the subdivision can result in a self-similar grid (i.e., a fractal material), the 
memory required to capture an infinite number of details for a self-similar material for all 
of the particles in a system can be as little as O(numunumv). This is possible because a 
reference to the map can be applied to each particle in the system and only one data 
structure need be stored. As an illustration, taking an original 4x4 map populated from 
samples in a random uniform distribution in the range [0,0.05], provides the result shown 
in Figure 6 when applied in a self-similar grid hierarchy. 

 4. Surface Representation of the Contact: 

The SDM can be used to represent a variety of surface-based properties. If we use the 
SDM to represent unsigned deviations of the actual surface profile from the assumed 
convex hull (e.g., a sphere), we can acquire the average deviation of the surface profile 
for the scale defined at level N-1 and the contact spot, a mesh representing the local area 
around the contact, at level N. An exaggerated example of the representation at level N-1 
is illustrated in Figure 7. Though it is possible for this geometry specification to result in 
multiple points of contact on different points at level N-1, this is not captured in this 
model, though, multi-point contacts of the asperities (at level N) are. That is, only surface 
torques due to asperity contacts in a single local region of contact are resolved. 
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Figure 7: Coarsely approximated irregular bodies in contact 

 
Using the approach described in the previous section (EQ 1-EQ 4 and optionally EQ 5-
EQ 9), the scalar value at the point of contact can then be acquired (at level N-1); this can 
be used to provide the base depth for a statistical distribution of asperity depths at level 
N. Level N is assumed here to be the level of resolution of the same length scale as the 
potential contact spot. Together, the generated incremental asperity depth profile at level 
N can be combined with the perturbed radius (from the hierarchical representation 
through level N-1) to populate a contact spot discretization (CSD): 

( )vuXrvur perturbedprofile ,),( −=  
EQ 13 

where ),( vurprofile  is the surface profile along the contact spot (where the spot is 
described by the orthogonal parameters u and v), perturbedr  is the output of EQ 4, and 
( )vuX ,  is an arbitrary unsigned function describing the additional asperity depth. ( )vuX ,  

may be any arbitrary form, including a simple statistical distribution, a distribution with 
complicated autocorrelations, or a function derived from an AFM scan of an actual 
surface.  
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Figure 8: Closure of surfaces of 10um spheres for surfaces assumed locally planar vs locally spherical 

A further correction of the surface profile, though, needs to be applied to adjust for the 
finite curvature of the surface. For a 100nm overlap on a 20μm spherical powder grain, 
the maximum geometric error (at the contact edge) is approximately 500Å (well beyond 
the point at which surfaces are assumed in contact), as is illustrated in the plot of closure 
in Figure 8 for a surface assumed locally planar versus one in which the surface is 
assumed to be spherical. 

Without correction, the surface would appear to be in closer compliance than in the 
modeled system, the contact torques are overestimated, which is generalizable to any 
convex surface, providing an artificial van der Waals stiffening at the edges of the 
adhesive contact. For the special case of a sphere, a correction factor can be formulated 
as follows: 

 Let u and v denote the orthogonal parameters of the common plane of contact and y 
denote the parameter in the direction normal to the common plane of contact towards the 
surface of the sphere denoted by the subscript 1; then the correction to the closure, 
[ ]vuc , , of the surface in terms of the common plane coordinates can be given by: 

[ ] ( ) ( )vuvu xxyxxyvuc ,,, 10 −=  
           EQ 14 

( ) 222
00 , vuvu xxRxxy −−=  

           EQ 15 

( ) 222
1101 , vuvu xxRRRxxy −−−−+= α  

EQ 16 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 5.0

u
uu num

ux δ  

EQ 17 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 5.0

v
vv num

vx δ  

EQ 18 

where uδ  is the length of the contact spot discretization in the u-direction, and vδ  is the 
length of the contact spot discretization in the v-direction. 

Further corrections must be made as the contact evolves in time both by translating and 
rotating. The goal is to maintain the center of the contact spot at the point of contact as it 
evolves in time. The matching of surfaces between potentially contacting bodies is 
performed through a procedure discussed later, leaving only the issue of how to update 
the discretization of the contact spot efficiently as it traverses the surface. 

 

Figure 9: Visualization of plane rotated about 2 degrees of freedom, excluding rotation about the 
normal direction 

Because relative rotation about the surface normal is handled during the step of resolving 
contact spot mesh interaction between the interacting bodies, any arbitrary rotation that 
satisfies the mapping to the new common plane between the bodies can be adopted. Thus, 
the most natural and simplest transformation is to constrain rotation about the surface 
normal, allowing a simple linear gradient to transform the scalar values into the new 
transformed coordinates. A specific case of this constraint is shown in Figure 9. The 
following relations can be used to transform the old scalar values into the new coordinate 
system for the rotated point: 

 
ττ

ττ
τ nt

nt
s

ˆˆ
ˆˆ

ˆ
1

1

×
×

=
−

−  

EQ 19 



LLNL-JRNL-401821 

ττ

ττ
τ sn

sn
t

ˆˆ
ˆˆˆ

×
×

=  

EQ 20 

( )( ) ττττττ nnxcpxx ˆˆ11 ⋅−+= −−
rrr

 
EQ 21 

( )( ) ( )( ) τττττττττδ ttcpxsscpx ˆˆˆˆ ⋅−+⋅−=
rrr

 
EQ 22 

 [ ] [ ] ( ) τττττττ
δδ

nxcpt
num
v

s
num
u

vumapvumap
v

v

u

u ˆ2ˆˆ,, 1111 ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+++= −−−−

r  

EQ 23 
where τŝ  is the director in the s-parameter direction at time τ, τt̂  is the director for the t-

parameter direction at time τ, τx
r  is the centroid of the contact spot at time τ, τδ

r
 is the 

difference between the position of the contact point at time τ and the position of the 
centroid of the contact spot at time τ, and [ ]τvumap ,  is the new value of the scalar in the 
cell addressed as [u,v] at time τ. The sum on the last parenthetical term is correct (rather 
than a difference), since the map values represent depths rather than asperities. The frame 
of reference can also be in either the global (inertial) or local (convective) frame as long 
as the convention is adopted consistently. 

For translation, a “conveyer belt” approach is used where map used to define the contact 
spot is kept at a constant matrix size, but cells are shifted as the contact point moves, and 
new material is “loaded” onto the approached sides. Physically, the model implies that 
material history associated with the material outside of the CSD footprint is lost. The 
translation procedure is triggered when the projection of the contact point onto the plane 
falls outside of 1 cell from the center; that is, whether τδ

r
 is more than a single bin in 

magnitude. When triggered, all cells are shifted by the appropriate number of bins along 
each orthogonal direction, and τx

r  is reset to the new center. The procedure is outlined 
below: 

( ) ( )
⎪⎩

⎪
⎨

⎧
>⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅−=

otherwise
num

scpxscpx
num

n
u

u

u

u

u

,0

ˆ,ˆint
δ

δ ττττττ
rr

 

EQ 24 

( ) ( )
⎪⎩

⎪
⎨

⎧
>⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅−=

otherwise
num

tcpxtcpx
num

n
v

v

v

v

v

,0

ˆ,ˆint
δ

δ ττττττ
rr

 

EQ 25 

If ( ) ( )
v

v

u

u

num
tcpxor

num
scpx

δδ
ττττττ >⋅−>⋅− ˆˆ rr  then 

  For indices in the range uu numnu <+≤0  and vv numnv <+≤0  
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[ ] [ ]ττ vushift nvnumapvumap ++= ,,  

For indices outside of the range but where unumu <≤0  and vnumv <≤0  

[ ] valuenewvumapshift _, =τ  

where new_value is a new population value sampled from the original 
distribution used to seed the profile layer. 

  and 

ττττ
δδ

t
num

ns
num

nxx
v

v
v

u

u
ushift

ˆˆ, ++=
rr  

EQ 26 

The correction for the surface curvature is not included yet in the formulation of 
[ ]τvumapshift , . For implementation with arbitrary convex hull geometries, the curvature 

correction term should be calculated at each time step and applied. However, for the 
special case of spheres, the curvature is globally constant, and the curvature correction is 
time-invariant. This attribute combined with the procedure to maintain the contact spot’s 
center about the contact point, allows the curvature to be cached in a data structure of the 
same size as the map, as described by EQ 14-EQ 18. 

So far, the procedure is fairly straightforward, and its simplicity can be translated directly 
into efficiency. There still remains, though, the issue of resolving the relative rotation 
about the contact point normal to the surface. This requires combining the now coplanar 
regular grid meshes and determining the new closure conditions. These meshes are, 
unfortunately, not necessarily aligned in coordinate space, and the area of overlap will 
often be an irregular polygon, as shown in the example in Figure 10. 

 

Figure 10: Overlap of contact spot meshes from each interacting body 

To resolve the rotation about the normal to the common plane, a host surface is first 
chosen. Here, the surface labeled with subscript 0 is arbitrarily chosen to be the host 
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surface. For simplicity, the asperities are assumed to be discrete cylindrical bodies 
oriented along the normal with hemispherical tips. The cylindrical asperities on surface 1 
can now be binned into the appropriate surface bins on surface 0, reducing the problem to 
a simple 2-D neighbor-sorting problem for mono-disperse disks, which can be efficiently 
addressed using a number of different algorithms [61-68]. The nearest neighbor 
determination is used to populate a matrix in the surface 0 frame of reference 
( [ ]

1
, τvumapremap ):  

[ ] ( ) [ ]( ) ( ) [ ]( )
1100 ,,,,, ττ vumapxxyvumapxxyvuc remapvushiftvuadjusted +−−=  

EQ 27 

Once the nearest neighbors have been determined, the contact can be resolved using the 
modeler’s choice of pairwise asperity contact laws. 

5. Characterization of Normal Loading:  

To verify the approach, a simple test case is investigated, where the computational 
asperities span the entire surface of the sphere as a thin film, such that, these 
computational asperities represent a perfect partitioning of the elastic surface of a sphere 
with no gaps or disturbances. For this simple case, the computational asperities are 
modeled using a serial spring model where the underlying grain body is modeled using 
the Hertzian [1] solution for elastic spheres with the individual asperities modeled as 
simple elastic columns in uniaxial compression: 

[ ] ( )

( )
2

32
3

2

22

13
4

2
1,

sphere

vusphereadjusted
vu

vu

RE

xx
R

vuc
numnumh

E

δγ
ν

γδ
δδ

−

=⎟
⎠
⎞

⎜
⎝
⎛ ++−

⋅∑∑
 

EQ 28 

By substituting γϑ =  in EQ 28 and solving the resultant cubic equation for ϑ , the new 

value of sphereδ  is spheresphere δϑδ 2=′ , and a convergent solution can be obtained through 
iteration. Convergence is assumed to be reached when: 

[ ] ( ) ( ) tolRExx
R

vuc
numnumh

E
spherevusphereadjusted

vu

vu <
−

−⎟
⎠
⎞

⎜
⎝
⎛ ++−

⋅∑∑ 2
32

3

2
22

13
4

2
1, δγ

ν
γδ

δδ
 

EQ 29 

Here we evaluate the case of quasi-static contact between a pair of similar, non-adhesive, 
frictionless, smooth spheres. We can assume that the map values are a constant, and the 
only equation required is the spherical curvature correction EQ 14. This particular case 
physically represents a sphere covered with a uniform height surface (30nm) of perfectly 
aligned and compliant asperities and can also be thought of as an elastically-deformable 
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sphere covered in a thin, elastic film of material with no shear strength. The asperities for 
this case are modeled as perfectly elastic columns of silica (73GPa Young’s modulus 
with a Poisson’s ratio of 0.16). 

 

Figure 11: Force-displacement relationship for quasi-static approach of spherical bodies in the 
absence of adhesion for relative approach below 50Å 
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Figure 12: Pressure-relative approach relationship for quasi-static approach of spherical bodies in 
the absence of adhesion for relative approach below 50Å 
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Figure 13: Surface profiles (abscissas in um) of  normal tractions (vertical axis in uN) for 20μm 
adhesionless, elastic spheres with uniform 30nm asperities with relative approach of  2.5nm, 25nm, 

and 50nm 

Figure 11 compares the Hertzian solution [1] for frictionless spheres with the CSD 
approach for surface roughness. The procedure can also capture the profile of surface 
tractions, as shown in Figure 13. As the relative approach increases the assumption of no 
shear strength becomes increasingly inappropriate for describing the response of the 
surface as can be noted from Figure 12.  

6. Implementation of Archard’s Theory: 

As an illustration of the technique and a further verification of its applicability, the rough 
sphere model of Archard [50, 51] is implemented and compared against analytical results. 
We use the assumptions of Archard  [51] that the radius of the asperities are small 
compared to the radius of the spherical body, and the general stress distribution in the 
spherical body is not affected by the interactions of the asperities. To convert Archard’s 
model into the hierarchical framework, the convex hull of each layer, j, is a sphere of 
radius, Rj, where the surface asperity at level j is given by rj and the nominal radius of the 
smoothed sphere (i.e., without the asperities) is r0. 
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∑
=

+ =+=
N

ji
ijjj rRrR 1  

EQ 30 

The surface patch introduced in section 4 is then used to represent the hierarchical 
distribution of asperities. Here we use mono-disperse asperity heights at each resolution 
level and a proportionality constant, α, such that the asperity height at consecutive scales 
is related as: 

 1−⋅= jj rR α  

EQ 31 

Using an arbitrary α of 1% for a single sub-resolution level of a rough grain, which has a 
nominal radius of 100 μm, as shown in Figure 14, is sufficient to reproduce the 
relationship adapted from Archard [51] for contact of a rough elastic sphere: 

4
5AP ∝  , 

EQ 32 

where P is the load and A the contact area. The Hertzian solution for a smooth sphere 
with a radius equal to that of the convex hull for the rough sphere is also shown for 
comparison (the Hertzian contact observes the relationship 2

3AP ∝ ). 
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Figure 14: Comparison of the Archard [51] model as captured by the proposed hierarchical scheme 
(rough), the Hertzian solution for a smooth sphere (smooth), and the power law relationship derived 

by Archard for a rough elastic sphere, where the nominal radius is 100μm with 1μm asperities 

 

7. Extensions to Other Surface Phenomena: 

A persistent problem in contact mechanics is in determining an effective constitutive law 
for contact that can handle the full complement of coupled degree-of-freedom reactions 
of the contact in a computationally efficient manner. Though, detailed finite element 
modeling of the contact can always be performed (e.g., NIKE2D FEM simulations of 
Walton et. al. [69]) to finely resolve the contact, this is intractably computationally 
intensive for multi-body dynamics simulations, as is the molecular dynamics approach of 
Gilabert [70]. Kalker [71] devoted a significant part of his career to modeling coupled 
rolling and translational contact. Recent work by Tomas [21, 22] has provided perhaps 
the most extensive set of contact solutions of appropriate detail for multi-body dynamics 
simulations. With the detailed capture of traction profiles across the contact areas, the 
behavior resulting from coupled tractions can be explicitly captured. Though the SDM 
approach is computationally intensive for massively parallel simulations, it is useful for 
smaller simulations and as tool in calibrating simpler models of adhesion and contact of 
rough bodies prior to larger simulations. 

For the pharmaceutical manufacturing industry, understanding and controlling the surface 
adhesion properties of particles is extremely important. From the design of dispersive 
powder inhalers (DPI's) [72] to the selection and development of powder blenders and the 
selection of blending excipients, surface adhesion plays a key role in the industrial 
production of micron-scale powders. For low-shear, blended adhesive pharmaceutical 
powders, the crushing and surface deformation of individual powder grains is low and the 
surface morphology relatively constant; therefore, surface properties remain relatively 
invariant during the process of blending. This invariance can be exploited in the SDM 
approach to tie microscopic surface properties of the powder grains, such as asperity 
heights and hydrophilicity, to adhesive strength and functional form of the contact 
relation. 

Several researchers have noted the correlation between relative humidity and powder 
adhesion. Cleaver and Tyrell [73] offer a survey of the various studies, noting that one of 
the dominant force mechanisms is the formation of liquid bridges at relative humidity 
similar to that found in the typical operating environment of pharmaceutical powder 
blenders. In relatively dry environments, an electrostatic potential may develop at the 
surface of micron-sized particles, a problem in pharmaceutical processing, lithographic 
powders [74, 75], the study of solar nebula and cosmic dusts [76, 77], saltation [78], and 
lunar regolith [79, 80]. In both the cases of electrostatic potential [81] and overall surface 
energy [82, 83], the surface roughness of the particle has a significant correlation with the 
magnitude of force developed in the interaction. Coupled with models of liquid bridging 
[84, 85] and electrostatic potential [78, 86, 87], the SDM method can be used to provide 
better spatial distribution and coupling of contact effects on the surface of grains. 
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8. Conclusions: 

We have shown a method for capturing phenomena that vary over the surface of powder 
grains by using a hierarchical, multi-scale discretization of the surface referred to as the 
SDM method. This computation method allows DEM modelers to easily incorporate 
theoretical models of surface roughness to multi-body problems. The method has been 
verified against a sphere coated in a perfectly elastic film where the solution converges to 
the Hertzian solution for small deformation. The method has also been applied to 
representing the area of contact for non-adhesive, rough bodies in normal contact and 
compared against the functional form derived by Archard [51] for contact of rough elastic 
spheres. The extension to motions along multiple degrees-of-freedom is natural. This 
approach offers both a method of directly capturing the spatial variance of surface 
properties in contact laws at arbitrary resolution as well as a method of calibrating 
existing contact laws for particular materials of interest to the modeler. 

This method has applicability beyond the representation of roughness and can be used to 
design constitutive models of contact based on knowledge of material properties and 
surface morphology, which can then be used in place of the discretization approach for 
computational efficiency when implementing in multi-body dynamics simulations. This 
technique, and the surface discretization framework upon which it is based, can be 
naturally extended to capture a wide range of other surface-related phenomena. Some 
examples include: roughness effects (with fine control of asperity scales) in aspherical 
soil compression; the triboelectric creation and interaction of localized electrostatic 
charge spots; and the bridging, ion transport, and surface charge-coupled effects of 
adsorbed water and other volatile compounds. 
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